PtRuナノ粒子触媒の電圧印加時における XAFS 解析

○堀岡 亮*1・本田 裕佑*1・仁谷 浩明*1・小原 孝介*1・川口 卓也*1・ 中川 貴*2・清野 智史*1・大門 英夫*3・山本 孝夫*1

r-horioka@mit.eng.osaka-u.ac.jp

大阪大学院工学研究科*1・東京工業大学院理工学研究科*2・日立マクセル㈱開発本部*3

1. 緒言

近年、携帯電子機器の小型多機能化が急速に進行し、これらの機器を長時間駆動させる電池開発が急務になっている。燃料にメタノールを用いる直接メタノール燃料電池 (DMEC)は小型・軽量化が可能であり、リチウムイオン電池の約10倍の体積エネルギー密度を有するため、次世代のエネルギーソースとして期待が持たれている。DMFCのアノード用触媒としては、カーボンに担持したPtRuナノ粒子(PtRu/C)が使用される。DMFCの実用化に向けての課題は、PtRu/C触媒のメタノール酸化活性を高め、貴金属使用量を削減してコスト低減を図ること、また触媒の耐久性を高め、電池寿命を延ばすことが挙げられる。本研究では後者の課題に着目し、PtRu/C触媒の劣化メカニズムを解明するためPtRu/C触媒に陽電圧を印加してXAFS測定を行い、PtRu/C触媒の微細構造変化を調べた。

2. 実験

 H_2PtCl_6 とRuCl₃をそれぞれを 0.25 mmol含んだ水溶液 100ml中にカーボン担体(Vulcan XC72R)を分散させ、2-プロパノールを 1 vol%、P供給源としてホスフィン酸ナトリウム (NaPH₂O₂)0.25 mmolを含む溶液を調製した。P添加によりPtRu粒子が微粒子化し、メタノール酸化活性が高まる Π 。この混合溶液に γ 線を照射することで貴金属イオンを還元し、カーボン担体上に Π とで評価した。PtRuナノ粒子の粒径、結晶構造、組成をそれぞれ Π を加て、XRD、XRFで評価した。また、PtRu/Cナノ粒子の Π 端XAFS測定をKEK-PFのBL9Cを用い、室温、蛍光法で行なった。自作の溶液セルを用いて Π に電圧を印加しながらXAFS測定を行い、入射X線、蛍光X線強度を電離箱で測定した。

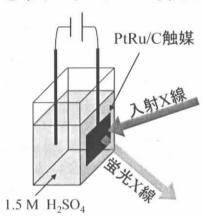


図1. 測定用溶液セル概略図

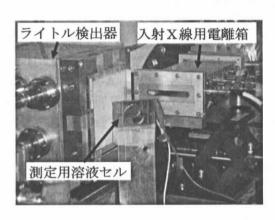


図2. 測定時の様子

3. 結果

XRD 測定の結果、fcc 構造の Pt に由来するピークも、hcp 構造の Ru に由来するピーク も観測されなかった。しかし、TEM 観察の結果、幾何平均粒径が 1.6 nm の微細粒子がカ ーボン上に担持していることが確認された。また、XRF 測定から粒子中には Pt と Ru が 存在することが示された。したがって、カーボン担体上の微粒子は PtRu と考えられる。

得られた EXAFS 振動 $\chi(k)$ の解析には EXAFS 解析ソフトウエア Artemis 0.8.007 および FEFF 7.02 を用い、配位種をPt、Ru、Oとした3シェルの理論EXAFS解析を行なった。 解析結果を表1に示す。これらの結果についての議論は当日の発表にて行なう。

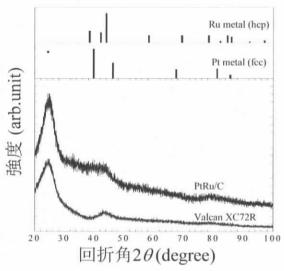


図3. PtRu/CのXRDパターン

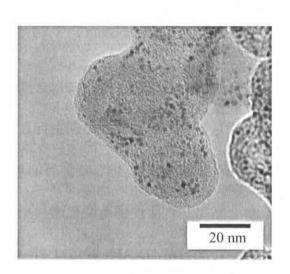


図 4. PtRu/C の TEM 画像

表 1. EXAFS カーブフィッティングによって決定したパラメータの最適値

		R [Å]	N	σ^2 [Å ²]	ΔE_0 [eV]	R-factor
電圧印加なし	Pt-O	2.03	4.53 ± 0.54	0.0077	13.7	0.0074
	Pt-Ru	2.78	0.611 ± 0.17	0.0053	28.3	
	Pt-Pt	2.82	1.64 ± 0.48			
電圧印加あり	Pt-O	2.03	4.79 ± 0.48	0.0083	12.5	0.0043
	Pt-Ru	2.76	0.613 ± 0.15	0.0048	26.8	
	Pt-Pt	2.80	1.51 ± 0.37			

R:原子間距離 N:配位数 σ^2 :デバイワラー因子 ΔE_0 :エネルギーシフト R-factor:誤差

参照文献

[1] H.Daimon, Y.Kurobe, Cayal. Today, 111, 182 (2006).