放射線プロセス素過程と 本法へのコメント

大阪大学産業科学研究所 吉田陽一

内容

- 1. 放射線と物質の相互作用
- 2. 有機材料における素過程
- 3. アト秒ビーム応用

1. 放射線と物質の相互作用

電子と物質との相互作用

- 電離
- 電子的励起
- 振動励起
- 回転励起
- 解離性付着
- 弹性散乱
- その他

電子と物質との相互作用

- 電離
- 電子的励起
- 振動励起
- 回転励起
- 解離性付着
- 弾性散乱
- その他

物質の照射効果 を考えるときは、 電離(イオン 化)が重要

電子の種類?

- 1次電子(入射電子)
- 2次電子(高エネルギー:イオン化可能)
- 電子(熱化電子) (低エネルギー:イオン化可能不可)

電子の種類?

- 1次電子(入射電子)
- 2次電子(高エネルギー:イオン化可能)
- 電子(熱化電子) (低エネルギー:イオン化可能不可)

電子の種類?

- 1次電子(入射電子)
- 2次電子(高エネルギー:イオン化可能)
- 電子(熱化電子) (低エネルギー:イオン化可能不可)

熱化電子 in Spur (スパー) 2 次電子 2 次電子 2 次電子

イオン化

原子・分子がエネルギー を受け取って、その結果、 電子が飛び出す。

高エネルギー電子ビーム が物質に及ぼす作用のほ とんどがイオン化である。

イオン化に必要なエネルギーは約10eV

LET (Linear Energy Transfer) 線エネルギー付与

0.2 eV / nm

低LET放射線(電子線、X線、ガンマ線)

イオン化のG値

G値:100eVのエネルギーを物質が吸収した時に生成する活性種の個数

従って、平均的に20eVのエネルギーによって、イオン化が1つ起こる。 イオン化エネルギーは10eVなので、残りの10eVは、熱などに変わる。

Radiation energy is lost mainly at spur in the material.

2. 有機材料における素過程

アト秒・フェムト秒パルスラジオリシス

New accelerator technique: laser photocathode RF electron gun, etc.

Electron Pulse Generation by Laser Photo-Cathode RF Gun

◆ 1.6 Cell S-band (2856MHz) RF Gun

◆Picosecond Nd:YLF Laser

Pulse width: 5 ps @UV lightPulse energy: 0.2 mJ @UV light

•Time jitter: <0.5 ps RMS

*Synchronized with 79.3MHz RF(1/36 of 2856MHz)

3 8 MeV電子パルス

大阪大学産業科学研究所 (2006年)

Attosecond pulse radiolysis

磁気パルス圧縮器

ストロボスコピックとは

パルスラジオリシス

パルスラジオリシス法 (時間分解光吸収分光法)

Femtosecond Pulse Radiolysis

Photocathode RF gun

Femtosecond electron linac

Magnetic pulse compressor

Laser and detection system

非極性物質中での反応 (アルカン:RH)

ジェミネートイオン再結合の様子

Time-dependent behavior of n-dodecane cation radical observed by subpicosecond pulse radiolysis.

Radiat. Phys. Chem., 60, 319 (2001)

____experiment

——Simulation based on the diffusion theory

RH \rightarrow RH^{+*} • +e⁻ RH^{+*} • \rightarrow RH⁺ • 7 ps e^{-} + CCl_{4} \rightarrow Cl^{-} + CCl_{3} • RH^{+*} • + TEA \rightarrow RH⁺ • + TEA \rightarrow

Analysis by diffusion theory (Smoluchowski eq.)

カチオンラジカルの励起状態?

Time-dependent behavior of cation radical in femtosecond pulse radiolysis of n-dodecane (800 nm).

Characteristic of excited cation radical of n-dodecan

	Excited cation radical	Cation radical
Lifetime	7 ps	stable
Reaction rate with TEA [M ⁻¹ s ⁻¹]	3.3 x 10 ¹¹	2.0 x 10 ¹⁰ Diffusion controlled

High reactivity High mobile?

Time-dependent behavior of electron and cation radical in femtosecond pulse radiolysis of n-dodecane

ナノ空間内の放射線化学反応

ナノ空間内の放射線化学反応

次世代ナノファブリケーション

新規材料、新規反応プロセス

量子ビーム誘起超高速過程の例

(関連分野) ナノテクノロジー 新規材料開発 放射線耐性

◆ 極性液体 『溶媒和電子』

> (関連分野) 原子力 生体、がん治療

3. アト秒ビーム応用

アト秒バンチによる集団電離 (コヒーレントイオン化)

アト秒電子ビームの発生

アト秒電子ビームの発生(シミュレーション)

LET (Linear Energy Transfer)

$$LET = \frac{dE}{dx}$$

電子ビームでは、0.2eV/nm (広いエネルギー範囲で)

N個の電子から成るバンチは、

バンチ長が、このバンチが引き起こす現象の特性長より小さければ、あたかも電荷 Ne の巨大粒子であるかのように振る舞う。

相対論的イオンビームの阻止能に対するベーテの式

$$-\frac{dE}{dx} = \frac{4\pi Z^2 e^4}{mv^2} N_t Z_t \left[log \left[\frac{2mv^2 \gamma^2}{E_0} \right] - \beta^2 \right].$$

Z イオン電荷, $N_t Z_t$ 標的の密度と電荷

もし N 電子を持つバンチのサイズがイオン程度に小さければ,標的にとってバンチは電荷 Z の巨大粒子のようにみえる.

阻止能は $Z^2=N^2$ に比例する.

入射したバンチの平均エネルギーの標的中の時間変化

バンチ長依存性 n_e =8.47 × 10^{22} cm⁻³, c/ ω_p ~ 18 nm, $1/\omega_p$ ~ 60as

Collective effect of attosecond electron pulse

High-energy-density state >10¹²Jm⁻³

Ultrashort-bunched beam (attosec electron bunch)

最後に

放射線照射効果の初期過程の解明が進んでいる。ナノ空間における超高速反応が起きており、今後、プロセス等に影響を与える。

アト秒の電子線は、イオンビームを超 える効果を、プロセスに与える可能性 がある。